ME 401
Advanced Kinematics

UNIT 3

Kinematics synthesis of
advance topics

Department of Mechanical Engineering




% Planar Kinematic Mapping V

Three parameters, a, b and ¢ describe a planar y P
displacement of E with respect to X. _
F—
|
|
|
|
|

The coordinates of a point in E can be mapped to
those of Z in terms of a, b and ¢:

X] [cosp —sing alx
Y |=|sihng cosp Dby

Z 0 0 NG
2

— (x:y:z): homogeneous coordinates of a point in E.

— (X:Y:Z): homogeneous coordinates of the same
pointin Z.

— (@,b): Cartesian coordinates of O in X.

— ¢ rotation angle from X- to x-axis, positive sense
CCW.




% Kinematic Mapping

The mapping takes distinct
poles to distinct points in a 3-D
projective image space. It is
defined by:

X, | [asin(ep/2)-bcos(p/2)]
X, acos(p/2)+Dbsin(p/?2)
X, 2sin(p/2)
AR 2cos(p/2)

Dividing by X, normalizes the
coordinates:

X, | |L(atan(ep/2)-b)
X, | | i(a+btan(p/2))
X tan(ep/2)

| X4 g 1 8

2

 The inverse mapping Is:

tan(¢/ 2)
a
b

X, X,
2(X, X5+ X, X ) (X5 + X))
Z(szs T X1X4)/(X32 T Xj)
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% Kinematic Mapping

« Using half-angle substitutions and these above relations the basic Euclidean
group of planar displacements can be written in terms of the image points

X [X2=X2 —2X,X, 206X, +X,X,)]
ALY 2X, X,  Xi=Xi 2(X,X;—X.X,)
Z 0 0 X2+ X;

+ / The inverse transformation yields

X _Xj_xg,z 2X3X4 2(X1X3_X2X4)_
uly|=|—2XX, XZ-=XZ 2(X,X,+X,X,)
A 0 0 X2 +X?

« A and p being non-zero scaling factors arising from the use of homogeneous
coordinates.




% Constraint Manifold Equation

Consider the motion of a fixed point in E constrained to move on a
fixed circle in X, with radius r, centred on the homegeneous
coordinates (X.: Y : Z) and having the equation

Ko (X?+Y?)+2K/XZ +2K.YZ +K,Z? =0,

where
K, = arbitrary homogenisi ng constant.

— If K, = 1, the equation represents a circle, and
K, =—Xc,
K, ==Y,
K, =K +K>-r?
— If K, = 0, the equation represents a line with line coordinates

e s e D e
[Kl.KZ.KS]_{ZLl.ZLZ.Lg}.



PR-Dyad Line Coordinates

« For PR-dyads the K; line coordinates are generated by expanding the
determinant created from the coordinates of a known point on the line,
and the known direction of the line, both fixed relative to X:

X Y- /2
|:X/Z |:YIZ 1
cosé, siné, O

where
KNIZ homogeniou s coordinates of pointson the line,

Eor i coordinates of fixed pointon theline in %,
= angle of theline relative toX.
giving
17 1 :
K, :K,: K3]={—25|n & 15088, 1 Fyysing; —Fy s cosgz}.




RP-Dyad Line Coordinates

For RP-dyads the K, line coordinates are generated by expanding the
determinant created from the coordinates of a known point on the line,
and the known direction of the line, both fixed relative to E:

X Vo
Ile/E Ivly/E 1
cosé&. siné. O

where
X,Y,Z homogeniou s coordinates of pointson the line,

M e M, e coordinates of a fixed pointon theline in E,
e angle of theline relative to E.
giving
15 1 :
K, :K,: Kg]:{—zsm Se 150058 1M e Singe =M, e cost}.



Constraint Manifold Equation

« The constraint manifold for a given dyad represents all relative

displacements of the dyad links when disconnected from the other two
links in a four-bar mechanism.

« An expression for the image space manifold that corresponds to the
Kinematic constraints emerges when (X : Y : Z), or (X : y : z) from

PGt Canists 00 iy )0 8 @R eV e
DXEK . R EARE DK EH e )
0 0 X2+ XZ

PXZ = XK e 2K = XX )]
e = TR A X )
0 0 X2+ X2

are substituted into
Ko (X% +Y?)+ 2K XZ +2K,YZ +K,Z* =0.




% Constraint Manifold Equation

« The result is the general image space constraint manifold
equation:

1 -
Cs: KO(X12 + Xzz) "‘Z(Ko[x2 i3 y2]+ K3 _2[K1X+ KzY])X32 _(K1 + KOX)X1X3 "‘(Kz > KOY)X2X3 t

(K0y+ KZ)Xl = (K0X+ Kl)XZ -I__(Kly_ KZX)X3 iy
%
4

(K,[x* +y°]+ K, + 2K x+ K, y]) = 0.

e |f the kinematic constraint Is

— afixed point in E bound to a circle (K,=1), or line (K,=0) in X, then
(x : y : z) are the coordinates of the coupler reference point in £and
the upper signs apply.

— a fixed point in X bound to a circle (K,=1), or line (K,=0) in E, then
(X : Y :Z)are substituted for (x : y : z), and the lower signs apply.




Constraint Manifold Equation V

K, =1: the CS is a skew K, = 0: CS is an hyperbolic
hyperboloid of one sheet paraboloid (RP and PR dyads).
(RR dyads).
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Quadratic Forms

The general equation of the second degree In the plane In
Cartesian coordinates X, Y IS

ax” +2bxy +cy’ +2dx+2ey+ f =0

It can be written in matrix form

e

» The associated quadratic form is

X y]{a i

ect




Quadratic Forms

« The magnitude of the determinant of the 2x2 matrix
characterizes the shape of the curve the quadratic equation

represents.

e

Let det —ac—-b’=A

_b C_

- \We have the following possibilities:

s = thecurveis -

\

an ellipse,acircle if a=candb =0, ora point
a parabola, or 2 parallel lines which may be coincident
a hyperbola,or twointersecting lines

« Hence, all equations of the second degree in the plane are
conic sections, or degenerate conics.




Quadratic Forms

The general equation of the second degree In the plane can
be written symmetrically if homogeneous coordinates are

used X
Let X =— & =l, X # 0.
X3 X3
The general equation becomes

2 2 2
A X, +28,,X X, + 28X X5 +8,,X5 + 285X, X5 + 330X =0

wherea,, =a,a,=b,a,=cCc,a,,=d,8,,=€,8,, = f
Which can be written in a symmetric matrix form
|an a, a,
] aiZ a22 a23
_a13 a,g a33_




Quadratic Forms

Of the 9 coefficients, only 6 are distinct.

Since we can homogenize the 6 coefficients using any one
of them, only 5 of the coefficients are independent.

Thus, in general, 5 given points in the plane define a
unique conic, although it may be degenerate.

Given the coordinates of 5 points, we can solve the
resulting system for the 5 independent a;;.

4, o, 3
[Xl X2 X3 | a12 a22 a23
a13 a23 a33




Grassmannian Formulation

We can derive the implicit equation of a conic given 5 points
In another way.

This way was developed by Hermann Grassmann in the
1840’s.

It involves expanding a determinant, and is called
Grassmannian expansion.

The Grassmannian for a line, given a pair of non-
homogeneous point coordinates IS L:

A e |
= Vs
y, 1




Grassmannian Formulation V

- The Grassmannian for.a circle, given three sets of
homogeneous point coordinates is c:

X°+y°: Xz yz
2 2
Xty

P2
Xo Yo X4

2 2
X3 i y3 XSZS




Grassmannian Formulation

- The Grassmannian for.a general conic, given five sets of
point coordinates Is K:

Xy XZ yZ
X4 Y14
Xoly Y2l
X3l3  Y3i3
X4ty Y4ty
X5 Ysis




% Grassmannian Formulation

« The Grassmannian for.a general quadric, given nine 3-

tupples of point coordinates in X, vy, z, or four-tupples of
homogeneous coordinates (X:y:z:w) IS Q:

T Al ) NS OB ST X y Z W

2 2 2
Xl yl Z1 Xl yl Xl Zl yl Zl Xl Wl yl Wl lel Wl

Xglg Yolg XgWg YgWg ZoWy Wi




Example V

« Given three points on a circle (2,1), (1,2), (0,1)

KRS e T X
5 2 s !

1
5 R e
1 Qfacbl ded:

2X° +2y° —4xz —4yz+22° =0
e ek s




Intersection of Two Quadrics

The curve of intersection of two image space constraint
surfaces can be obtained in the following way:

We know the curve is 4™ order and points on it have one degree of
freedom (a one parameter parametric equation).

Solve the two implicit surface equations for X, and X,.

The solutions, given the nature of the constraint surfaces, will be
functions of X,.

Set X, = t and substitute into the expressions for X, and X,.

If there are multiple solutions, they may be viewed as parametric
factors in terms of the parameter X; = 1.

« This is illustrated in the following Maple work sheet.




=

Intersection of Two Quadrics

v

o

rat

Maple 6 Worksheet
Fle

22




SOLVING THE BURMESTER
PROBLEM USING KINEMATIC
MAPPING

© M. John D. Hayes!, Paul J. Zsombor-Murray?

!Department of Mechanical and Aerospace Engineering,
Carleton University, Ottawa, Canada,
2Centre for Intelligent Machines, McGill University, Montréal,
Canada

ASME DETC 2002
Mechanisms Synthesis and Analysis Symposium - Special Session:

Computer Aided Linkage Design
Montréal, QC

Tuesday October 1, 2002




% Five Position Exact Synthesis V

» The five-position Burmester
problem may be stated as:

— given five positions of a point on
a moving rigid body and the
corresponding five orientations
of some line on that body,
design a four-bar mechanism
whose coupler crank pins are ,/1&»

located on the moving body and E | FF
Is assemblable upon these five .
POSES.

In this example we assume the dyad types we wish to
synthesize by setting K,=1, thereby specifying RR-dyads.

24




Nature of the Constraint Surfaces

Burmester theory states that five poses are sufficient for exact
synthesis of two, or four dyads capable of, when pared, producing a
motion that takes a rigid body through exactly the five specified poses.

This means that five non coplanar points in the image space are
enough to determine two, or four dyad constraint surfaces that intersect
In a curve containing the five image points.

This Is interesting, because, in general, nine points are required to
specify a quadric surface (any function f(x,y,z)=0 is a surface):

AX® + By’ +Cz° + Dxy + Eyz + Fxz + Gx+Hy+ 1z+J =0.

The equation contains ten coefficients; their ratios give nine
Independent constraints whose values determine the equation.

It turns out that the special nature of the hyperboloid and hyperbolic
paraboloid constraint surfaces represent four constraints on the quadric
coefficients; thus five points are sufficient.




Nature of the Constraint Surfaces

The RR-dyad constraint hyperboloids intersect planes parallel to X,= 0 in circles.
Thus.all constraint hyperboloids contain the image of the imaginary circular
points, J; and J,: (1: £1:0:0).

The points J, and J, are on the line of intersection X,= 0 and X,= 0.

This real line, 1, is the axis of a pencil of planes that contain the complex
conjugate planes V,; and V,, which are defined by X, £ iX,= 0.

The RR-dyad hyperboloids all have V; and V, as tangent planes, though not at J,
and Js.

The PR- and RP-dyad hyperbolic paraboloids contain | as a generator, and
therefore also contain J; and J,.

In addition, V, and V, are the tangent planes at J, and J,.

Taken together, these conditions impose four constraints on every constraint
surface for RR-, PR- and RP-dyads.

Thus, only five non coplanar points are required to specify one of these surfaces.

26




% Application to the Burmester Problem V

e Goal:

— ~determine the moving circle points, M, and M, of the coupler
(revolute centres that move on fixed centred, fixed radii circles as
a reference coordinate system, EE, attached to the coupler moves
through the given poses).

2




% The Five Poses V

» To convert specified pose variables a, b, and ¢ to image
space coordinates, we first divide through by X, to get

Xlz(atan(¢2/2)—b)’ X2:(a+btazn(¢/2))’ Ly

 The five poses are specified as (a;, b, ¢),1=1, ..., 5,
the planar coordinates the
origin of EE, and orientation

all relative to (0,0,0°) in FF.

- The locations of the origins of . \
FF and EE are arbitrar
% /iz,/ S




The Five Equations

We get five simultaneous constraint equations.
Each represents the constraint surface for a particular dyad.

This set of equations Is expressed in terms of eight variables:

L. Xy, Xy, X3, X, = 1, the dehomogenized coupler pose coordinates in the
Image space.

. Ky, K, K, the coefficients of a circle equation (K, = 1).

li. X, Y, z=1, coordinates of the moving crank-pin revolute centre, on
the coupler, which moves on a circle.

Since Xy, X,, Xg, are given, we solve the system for the
remaining five variables
« K, Ky Kg X Y.




Geometric Interpretation

« The Geometric interpretation is:
— five given points in space are common to, at most, four RR-dyad
hyperboloids of one sheet.
If two real solutions result, then all 4R mechanism design information

is available:

I. Eachcirclecentreisat X. =—-K,, Y. =—K,.
ii. Circle radii are r* =K, — (X2 +Y2).
lii. Coupler lengthis |* = (x, —x.)*+(y; —y,)% i, j€{L2,34}i# j.

In the case of iii, the subscripts refer to two solutions i and j.
If four real solutions result, the corresponding dyads can be paired in
six distinct ways, yielding six 4R mechanisms all capable of guiding

the coupler through the five specified poses.
30




Crank Angles

To construct the mechanism in its five poses, the crank angles
must be determined.

Take each (x;, y;, Z = 1), and perform the multiplication for
each with the five pose variables in
XS A Kt B
DX, AR e )
0 0 XZ+1

The corresponding sets of (X;, Y;) are the Cartesian
coordinates of the moving R-centres expressed in FF,
implicitly define the crank angles.

For a practical design branch continuity must be checked.




Table 1. THE GENERATING MECHANISIA

M Poee, A;

Table 2. FIVE RIGID BOOY POSESIN FF.




{¢,

The Constraint Hyperboloids

v

The two constraint hyperboloids for the left and right dyads

33




(-7.997,0.001)
(7.983.-0.02})
15980
7.999
10,003
13972

|. THE GENERATING MECHANISIA
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Integrated Type and Dimensional Synthesis

Now we try to integrate both type and dimensional
synthesis into one algorithm.

We shall leave K, as an unspecified homogenizing

coordinate and solve the five synthesis equations for K,, K,
Ks, X, and y in terms of K.

In the solution, the coefficients K, K,, and K; will depend
on K.

If the constant multiplying K, is relatively very large, then
we will set K, =0, and define K;, K,, and K; as line
coordinates proportional to the Grassmann line coordinates:

Ay 1 ;
K, :K,: K3]={—25|n & 15088, Ry sing; —Fy s cosgz}




Integrated Type and Dimensional Synthesis V

 Otherwise, K,= 1, and the circle coordinate definitions for
Ky, K,, and K, are used:

K, = arbitrary homogenisi ng constant,
K, =-Xg,

K, ==Y,

K,=K+K;-r?




I
I
\
;

parameter value
F (X : Y 22} = (LEB21)
M,y (e ypae)=s=2% 0x 1)
M, (x:y:z):(O:O:l)v

M M, =2

FiM,; Pie=2.5

P-pair angle Uy, = 60 (deg)

Table 2: Geometry of the RRRP generating mechanism.




% Generated Poses

|2 Ose u b L (deg)
524080746 4.36781272 43 8BI482TR
2 FOO08T05T 403883237 ST AH5TEIHG

170308003 3.54123213 6699534998

1 43453496 29713077 2. 10014317

g L10748142 2 4483444 72 30529428

[able 1: The five desired poses of the RER P mechanis

= Convert these pose coordinates
to image space coordinates
(X1:X,:X5:1), and substitute into

the general image space T
constraint manifold equation. ~
« This yields five polynomial equations in terms of the K;, x and y.

« Solving for K, K,, K;, x and y in terms of the homogenizing circle, or
line coordinate K, yields:

40




% Solutions V

Parameter Surface 1 Surface 2 Surtace 3 Surtace 4
¢ —1.500K, —4.2909 x 10K, —15.6041K, -—-8.3011K,
s —2.0000K, 24773 x 10°K, 3.4362K, —5.0837K
K, —2.5801 x 107K, 2.3334 x 10"K, 107.3652K, 93.4290K,
T —2.0000 8.1749 x 10~ ° 0.2281 3.7705
7 3.4320 x 10~ 7 —1:3214 1070 —(0.7845 —2.0319

Table 3: The constraint surface coefficients.
At present, heuristics must be used to select an appropriate value for K, by
comparing the relative magnitudes of K, and K.

The coefficients for Surfaces 1, 3, and 4 suggest RR-dyads when K,=1.
The rotation centre for Surface 2 is numerically large : (4.3x10°, -2.5x10°).
The crank radius is about 5x10°.

This surface should be recomputed as an hyperbolic paraboloid, revealing
the corresponding PR-dyad.

41




The reference point with fixed point coordinates in E is the rotation centre
of the R-pair.

In a PR-dyad, it is clear that this point is constrained to be on the line
parallel to the direction of translation of the P-pair.

From the Surface 2 coefficients we have (X,y)=(8.1749x107,-1.3214x10°).

We could transform these coordinates to X using one of the specified poses
to obtain the required point coordinates, but they are sufficiently close to 0
to assume they are the origin of moving reference frame E.

The angle of the direction of translation of the P-pair relative to the X-axis
of £ is &y, and Is

2.4773x10°K

2

&s = arctan[

—Klj (4 2909x10°K,
= arctan




Parameter Relation Value
F (—Ky,, —Ky,) (1.500, 2.000)
M, (x1,91) (—2.000, 3.4329 x 10~7)
M, (z2,Y2) (R.1719:5¢10-7,—1.8204 %1075
Uy arctan (%2“) 60.0°

1

Table 4: Geometry of one of six synthesized mechanisms that is identical to the generating RRRP
linkage in Figure 1.

Solution Dyad surface pairing
1 Dvad 1 - Dyad 2
Dvad 2 - Dyad 3
Dvad 2 - Dyad 4
Dyad 1 - Dyad 3
Dvad 1 - Dyad 4
Dvad 3 - Dyad 4

Table 5: Dyad pairings vielding the six synthesized mechanisms.
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% Kinematic Mapping

The mapping takes distinct
poles to distinct points in a 3-D
projective image space. It is
defined by:

X, | [asin(ep/2)-bcos(p/2)]
X, acos(p/2)+Dbsin(p/?2)
X, 2sin(p/2)
AR 2cos(p/2)

Dividing by X, normalizes the
coordinates:

X, | |L(atan(ep/2)-b)
X, | | i(a+btan(p/2))
X tan(ep/2)

| X4 g 1 8

2

 The inverse mapping Is:

tan(¢/ 2)
a
b

X, X,
2(X, X5+ X, X ) (X5 + X))
Z(szs T X1X4)/(X32 T Xj)
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% Kinematic Mapping

 Using half-angle substitutions and these above relations the basic
Euclidean group of planar displacements can be written in terms of the
Image points

XA XS X2 XK, K e KX )
Y 2X X,  XF-=XZ/ 2(X,X,—X,X,)
i 0 0 X2+ X,

A being non-zero scaling factors arising from the use of homogeneous
coordinates.




% Circle and Line Coordinates

Consider the motion of a fixed point in E constrained to move on a
fixed circle in X, with radius r, centred on the homegeneous
coordinates (X.: Y : Z) and having the equation

K (X?+Y?)+ 2K XZ +2K,YZ +K,Z* =0,
0 it 2 3

where
K, = arbitrary homogenisi ng constant.

— If K, = 1, the equation represents a circle, and
K, =-X¢,
K, ==Y,
K, =K +K>-r?
— If K, = 0, the equation represents a line with line coordinates

e s e D e
[Kl.KZ.KS]_{ZLl.ZLZ.Lg}.




% Constraint Manifold Equation

The constraint manifold for a given dyad represents all relative
displacements of the dyad.

An expression for the image space manifold that corresponds to the
Kinematic constraints emerges when (X : Y : Z) from

N D G o s i Qi e e
Y 2X,X,  XZ=XZ 2(X,X,-X;X,)
7 0 0 X2+ X2

are substituted into

K, (X?+Y?)+2K XZ +2K,YZ +K,Z* =0.




Constraint Manifold Equation

« The result is the general image space constraint manifold
equation:

CS K, (X2 + X22)+%(K0[x2 3714 K = 20K x4 K YD X2 = (K, + K X)X X, +

K, =Ko ¥) X, X5 = (KoY + Ky) Xy + (KX + K ) X, = (K y = Ko X) X, +

(KO[X2 A yz]"' K3 T 2[K1X+ KzY]) 1




Constraint Manifold Equation V

K, =1: the CS is a skew K, = 0: CS is an hyperbolic
hyperboloid of one sheet paraboloid (RP and PR dyads).
(RR dyads).
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SVD

« Any m x n matrix C can be decomposed into the product
(et V!

mxm — mxn nxn
— where U is an orthogonal matrix (UUT=I),

— the uppermost n x n elements of S are a diagonal matrix whose
elements are the singular values of C,

— Vs an orthogonal matrix (VVT=I).

« The singular values, s;, of C are related to its eigenvalues,
Ai. If C is rectangular CTC is positive semidefinite with
non-negative eigenvalues:

(C'C)x=4k = (CTC-Al)k=0

and s, =/ 4




SVD

SVD explicitly constructs orthonormal bases for the
nullspace and range of a matrix.

— The columns of U whose same-numbered elements s; are non-zero
are an orthonormal set of basis vectors spanning the range of C.

The columns of VV whose same-numbered elements s; are zero are an
orthonormal set of basis vectors spanning the nullspace of C.

If C,..., does not have full column rank then the last
n-rank(C) columns of V span the nullspace of C.

Any of these columns, in any linear combination, Is a non-
trivial solution to

Ck=0




Aside: Line and circle feature extraction

 Not specifying a value for K, gives a homogeneous linear equation in
the K:
Ko (X2 +Y?)+ 2K XZ +2K,YZ +K,Z* =0.

 Itis homogeneous in the projective geometric sense, and
homogeneous in the linear algebraic sense in that the constant term is

0: kX' =0.

« Four points in the plane yields the following homogeneous system of
linear equations:

X EY° 22X ™Y K,
e el D K
RN O TN K
B dean Cm b by sty v K

1

Xk =

2




Line and circle feature extraction

 Inthe general case where X has full rank the system has either

— only the trivial solution, k=0, or

— infinitely many nontrivial solutions in addition to the trivial solution.
Not very useful for feature identification if k characterizes the feature.
However, if the points are all on a line or a circle, then X becomes
rank deficient by 1.

In other words, X acquires a nullity of 1: the dimension of the
nullspace is 1 and is spanned by a single basis vector.

Since the singular values are lower bounded by 0 and arranged in
descending order on the diagonal of S by the SVD algorithm a
nontrivial solution for Kk is the same numbered column in V
corresponding to s;=0.

This is true for any X,.,, where m>4, having a nullity of 1.




% Points Falling Exactly on a Circle

» Given 42 points falling exactly on

the unit circle centred on the origin
generated by the parametric

equations
X = rcosd
Y r=NErsineg

* . This gives rank(X,5,4)=3
« We have s,=0 and look at the 4t

column of V:
ol R D T i S
><C
3 0 - X,
= = o> YC =
2 0 _Yc r
ol | B TS G e e

0.8

06

0.4

0.2

0.2

0.4

-0.6

-0.8

A unit circle on the origin in E2

T T A =¥ T
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Points Falling Exactly on a Line

Given 25 points falling exactly on 3
line through the origin having slope
m=1, generated by the parametric

equations
Kear==2t

NELREe
This gives rank(Xg, ,)=3

We have s,=0 and look at the 4t
columnof V: 7

- - line
0 1 v

0.7071 el
-0.7071 L cose
; 2 ;

: =2 XCINESNACOSEY

Zin ! . ! ! .
e A e
! ! ! : # :

a s s N 3
: : : Lo :
: ; : i 4 :
L R e F A S TR .
! ! : o :
: : : * :
: E 1 W i i
: : 'K : :
L S g o ey s oy
: ! g o : :
: : ¥ : :
s L A 5 a
: S : :
o S T S e T R S P .
: # : :
B : : :
[ l l L l
0 10 15 20 25
X
45

A line through the origin in E2, m=1
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% Points Falling Approximately on a Circle V

A unit circle on the origin in E2

« Given 42 points falling :

approximately on the unit circle 08
centred on the origin generated by ¢
the parametric equations 04
0.2

X = rcos$+noise .

Y = rsing+noise 02

e = This gives rank(X,,,,)=4 and
cond(X,,,4)=225.2.

 Still,when we look at V(:,4): A

K, P circle B ey = "
X, 0.00047
K, | |-0.00047 — X,
= = =| Y, |=|-0.00027
K, 0.00027 =Y.
M S r 0.99746
Ki| [-0.99746| |K +K,-r AT 2 -

59




% Points Falling Approximately on a Line V

A line through the origin in E2, m=1

> Given 25 points falling approximately = R
on a line through the origin having ++* ‘
slope m=1, generated by the parametric “[ T f """"""""" 1
equations | 70 :

X = t+noise J """ * """""" """" 1
Y = t+noise I SO N ot MRS N

« This gives rank(X,s,,)=4 and *“
cond(X,s,,)=5448.6 “” ----------- e

« Still,when we look at V/(:,4): G S S S S

AT - [approximat e line | D D “'
KT T-0.00068 app o>i| at e line =

——siné S 45
K, 0.71156 2
=t
S 1| Xsiné-Ycosé
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Approximate Mechanism Synthesis

» To exploit the ability of SVD to construct the basis vectors
spanning the nullspace of the homogeneous system of synthesis
equations Ck=0, we must rearrange the terms in the general
constraint surface equation, and for now, restrict ourselves to RR-
and PR-dyads.

« We obtain a constraint equation linear in the surface shape
parameters K,, K,, K,, K5, and products with x and y:

1(x3 +)X° + (X, = X, X5)x+ % (X, +1) Yy = (X, + X, X, )y + X 2 + X f}KO ke

% (L-X2)X= X,y + X X3+ X, }Kl-l- {x3x+%(1— X2)y =X, + X, X, }KZ +% (X2 + DK, =0.




% Approximate Mechanism Synthesis

« There are 12 terms. The X; are assembled into the m x 12
coefficient matrix C.

« The corresponding vector k of shape parameters Is:
K, K K, K, Kx Ky K Ky Kx Ky Kx Kyl
« Several of the elements of k have identical coefficients in C:

C %(1+ )(32) is the coefficient of K x?, Kyy?, and K.

%(1_ x2) is the coefficient of Kyxand K,y.

X, Is the coefficient of K, x and K,y.




% Approximate Mechanism Synthesis

» The like terms may be combined yielding an m x 8 coefficient
matrix C whose elements are:

{xf+x§ R G D el e ety %(1+x§) %(1—x§) xg}

« The corresponding 8 x 1 vector k of shape parameters is:

[Ko K Ky KXo Kpy KO(X2+y2)+K3 (K1X+K2Y) (sz_K1Y)]T

« We now have a system of m homogeneous equations in the form

Ck=0




Approximate Mechanism Synthesis

« We obtain the following correspondence between rank(C), the mechanical
constraints, and the order of the coupler curve:

rank (C) constraint coup ler curve order
8 general planar motion ??
6 twoRR -dyads 6

=) 6 one PR-,one RR -dyad 4
5 two PR - dyads 2

In general, rank(C) = 8, with O¢ on neither a line or circle.

Practical application of the approach will require fitting constraint surfaces
to their approximate curve of intersection, which means rank(C) = 8.

We will have to approximate C by matrices of lower rank.
To start we will investigate Eckart-Young-Mirsky theory.




Example V

Image space points

An exploratory experiment was devised.

A PRRR mechanism was used to generate a
set of 20 coupler positions and orientations
using the origin of E, given by the
coordinates (a,b), as the coupler point, and
taking its orientation to be that of the
coupler.

The positions range from (2,1) to (3,2), and
the orientations from -5° to -90°.

The range of motion of the PR- and RR-
dyads map to a hyperbolic paraboloid and
hyperboloid of one sheet, respectively.

These quadrics intersect in a spatial quartic,
such that rank(C) = 6.
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Example

When the rank of a 20 x 8 matrix is deficient by 2, then 2
columns are linear combinations of the remaining 6.

The column vectors V(:,6) and V(:,7) in the SVVD of C span its
nullspace.

Any linear combination V(:,6) + AV(:,7) is a solution.

But, we can regard this in a different way.

We can combine these columns of C and corresponding
elements of k.

The rank of C Is invariant under this process.

We obtain two different 20 x 7 coefficient matrices possessing
rank = 6.

The resulting two nullspace vectors represent the generating
PR-, and RR-dyads, exactly.




PR-Dyad Synthesis

 To extract the PR-dyad we set K,=0.
 Recall

kZ[KO Ko K, KXo Kpy Ko(X2+y2)+K3 (K1X+K2y) (sz_K1Y)]T

In the system Ck = 0 we can add columns 4 and 5 of C

because K,=0.
The resulting 20 x 7 matrix C possesses rank 6.

The 7t column of the V matrix that results from the SVD
of C yields k that exactly represents the constraint surface

for the generating PR-dyad.




RR-Dyad Synthesis

To extract the RR-dyad we add columns 2 and 3 of C.

This can be done when (X;-X,X3)/(X;X5+X,) has the same scalar value for
every, X;, X,, and X, in the pose data.

The scalar is the ratio K,/K, of the PR-dyad parameters.
This happens only when PR-dyad design parameters contain
I<3 == y - O

In this case the hyperbolic paraboloid has the equation

Kl(xlx3 7 Xz)"’ Kz(xzxs 4 Xl): 0
The curve of intersection with any RR-dyad constraint hyperboloid will be
symmetric functions of X, in X; and X,.

An image space curve with rank(C) = 6 but PR-dyad design parameters
Ky #=X#Yy#0
can always be transformed to one symmetric in X, and X,.




i 4 :

Table 1. Nullspace vectors obtained by adding two columns of C, and same-numbered
elements of K

Column 4+5 Value Column 2+23 Value

0 Ky -0.2085
0.7071 K, + K, 0.2085
-0.7071 : -0.2085

0
-0.8340
0.4170
0

Table 2. Generating mechanism shape parameters.

Parameter PR-dyad RR-dyad

0
-1
1




Conclusions and Future Work

« We have presented preliminary results that will be used in the
development of an algorithm combining type and dimensional synthesis
of planar mechanisms for n-pose rigid body guidance.

This approach stands to offer the designer all possible linkages that can
attain the desired poses, not just 4R's and not just slider-cranks, but all
four-bar linkages.
« The results are preliminary, and not without unresolved conceptual issues.
Cope with noise: random noise greater than 0.01% is problematic.
Establish how to proceed with 4R mechanisms.

For the general approximate case with rank(C) = 8, determine how to
approximate C with lower rank matrices.

Establish optimization criteria.
Investigate meaningful metrics in the kinematic mapping image space.
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% Five Position Exact Synthesis

» The five-position Burmester
problem may be stated as:

— given five positions of a point
on a moving rigid body and
the corresponding five
orientations of some line on
that body, design a four-bar ‘
mechanism that can move the |~
rigid body exactly through |
these five poses. 777 77,
In general, exact dimensional synthesis for rigid body guidance assumes
a mechanism type (4R, slider-crank, elliptical trammel, et c.).

Our aim is to develop an algorithm that integrates both type and
approximate dimensional synthesis for n > 5 poses.




% Type Synthesis

N k4

« For planar mechanisms, A

two types of mechanism
constraints:

— Prismatic (P); If‘ 'RR

/= PR

— Revolute (R). g

« When paired together,
there are four possible -
dyad types.

.z""'.'."-e ) et
e Z-e-;.',_:;»""
[ ’
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% Dyad Constraints V

« Dyads are connected
through the coupler link at
points M, and M., i

— RR —afixed pointin E
forced to move on a fixed
circle in X.

— PR —afixed pointin E
forced to move on a fixed b
line in X.

— RP —afixed line in E forced
to move on a fixed point in X.

— PP —afixed line in E forced
to move in the directionofa | | Z
fixed line in X. L
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% Kinematic Constraints

Three parameters, a, b and #describe a planar
displacement of E with respect to X.

The coordinates of a point in E can be mapped to
those of X in terms of a, b and &.

(cos@® —sin@ a|
sihn@ cos@ b
0 0 1

(x:y:z): homogeneous coordinates of a point in E.

(X:Y:Z): homogeneous coordinates of the same
pointin Z.

(a,b): Cartesian coordinates of O¢ in Z.

¢ rotation angle from X- to x-axis, positive sense
CCW.




% Circle and Line Coordinates

« Consider the motion of a fixed point in E constrained to move on a
fixed circle in X, with radius r, centred on the homegeneous coordinates
(Xc: Y i Z) and having the equation

Ko (X?+Y?)+2K/XZ +2K.YZ +K,Z? =0,

where
K, = arbitrary homogenisi ng constant.

— If K, = 1, the equation represents a circle, and
K, =-X¢,
K, ==Y,
K, =K +K>-r?
— If K, = 0, the equation represents a line with line coordinates

e s e D e
[Kl.KZ.KS]_{ZLl.ZLZ.Lg}.




% Circle / Line Coordinates V

Circle / Line Equation:

Ignoring infinitely (K]
distant coupler :
attachment points set Ck=[x?+Y? 2x 2r 1

A= =

K, acts as a binary
switch between circle
and line coordinates

0

ll_g

K
K
K

\ 3
| _ b AR SR AR SRS e _
Circle Coordinates \ *-.__ ///~ Line Coordinates

Ko=1 e 2 Jf e

% ] § i / B, -
ey 3 Yy sin 9
Kl b’ X C _.jf '-/__’,. ';t-n 7 3 gl 2
A 5 e _‘l_:,_;—;:'l‘)-f‘; y / _", g b 2

e 2 COS 4,
2

K, = XSIn & — ycos 4,




Reference Frame Correlation

X cosd -sin@ al x
1 0 0 111

Applylng Y |=|sin@ cosé b y} [0 ck=[x?+v?2 2x 2v 1]

yields

(xcos®—ysin@-+a) +(xsin@—ycos@+b)
2(xcos@ - ysin®+a)
2(xsin®—ycos0+b)

Lt 1 el 53

* Prescribing n > 5 poses makes C an n X 4 matrix.

* a, b, and 0 are the specified poses of E described in X.

Ck =

78




Approximate Synthesis for n Points

For n poses:
(xcos®—ysin@-+a) +(xsin@—ycos@+b)
2(xcos@—ysin®+a)
2(xsin®—ycos0+b)

1

 The only two unknowns in C are the coordinates x and
y of the coupler attachment points expressed in E.

 For non-trivial k to exist satisfying Ck=0, then C must
be rank deficient.

 The task is to find values for x and y that render C the
most ill-conditioned. &

Ck =




Matrix Conditioning

The condition number.of a matrix iIs defined to be:

O
=] oA oo
O MmN
A more convenient representation Is:

yEE,Oéxﬁl
K

v 1S bounded both from above and below.

Choose x and y In matrix C such that yIs minimized.




Nesce LR A OaRig) LRI

Any optimization method may be used and the numerical
efficiency of the synthesis algorithm will depend on the method
employed.

We have selected the Nelder-Mead Downhill Simplex Method in
Multidimensions.

Nelder-Mead only requires function evaluations, not derivatives.

It is relatively inefficient in terms of the required evaluations,
but for this problem the computational burden is small.

Convergence properties are irrelevant since any optimization
may be used in the synthesis algorithm.

The output of the minimization are the values of x and y that
minimize the yof C.




Nesce LR A OaRig) LRI

The Nelder-Mead algorithm requires an initial guess for x and y.

We plot yin terms of x and y in the area of (x,y) = (0,0) up to the
maximum distance the coupler attachments are permitted to be
relative to moving coupler frame E.

Within the corresponding parameter space, the approximate
local minima are located.

The two pairs of (x,y) corresponding to the approximate local
minimum values of yare used as initial guesses.

The Nelder-Mead algorithm converges to the pair of (X,y)
coupler attachment point locations that minimize y within the
region of interest.
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y Plot
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Nelder-Mead Minimization

 Once approximate minima are found
graphically, they are input as initial guesses
Into the Nelder-Mead polytope algorithm

» The output of the minimization is the value of
X and y that minimize the yof C




% Singular Value Decomposition

Any m x n matrix can be decomposed into:

G o= G b
mMxm — mxn
where:
« U spans the range of C
* V spans the nullspace of C
« S contains the singular values of C

For C ill-conditioned (¥ minimized):
* The last singular value in S is approximately zero
* The last column of V is the approximate solutionto CK =0

The last column of V is then the solution to vector K, defining a circle or line




% Circle or Line?

 In the most general
case, the vector K
defines a circle,
corresponding to an RR
dyad

o If the determined circle
has dimensions several
orders of magnitude
greater than the range of
the poses, the geometry
IS recalculated as a line,

corresponding to a PR N
dyad A PR dyad, analogous to an RR
dyad with infinite link length and

centered at infinity

88




Special Cases: The RP Dyad

* RP dyads are the kinematic inverses of PR dyads
» To solve:

— switch the roles of fixed frame X and moving
frame E

— EXxpress points x and y in terms of X, Y, and &

— Solve for constant coordinates (X,Y) that minimize
vy of C

- cos@ sin@ —bsind—acosé
—singd cos@d bcosf@+asind
0 0 1




Special Cases: The PP Dyad

PP dyads:

« can only produce rectilinear motion at a
constant orientation

 can produce any rectilinear motion at constant
orientation

» are designed based on the practical constraints
of the application




xamples: The McCarthy Design Challeng¢

e |ssued at the ASME
DETC Conference In
2002

No information given
on the mechanism used

to the generate poses

11 poses:
overconstrained
problem




Manufacture Synthesis Matrix

pstitute pose information into

:(xcose— ysin@+a)* +(xsin@ - ycose+b)2T
[2(xcos® —ysin0+a))
[2(xsin®—ycos0+Db)]

i

* Plot yinterms of x and y
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y Plot
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y Plot
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Extracting Mechanism Parameters

« Minima found graphically at approximately
(1.5, 0.6), and (1.4, -2.0)

 Using these values as input, Nelder-Mead
minimization finds the minima at

(1.5656, 0.0583) and (1.4371, -1.9415)

» Singular value decomposition is used to find
the K vector corresponding to these
coordinates




Results

Dyad 1 Dyad 2

1.5656 1.4371
-0.0583 -1.9415
1.0000 1.0000
-0.7860 -2.2153
-0.3826 -1.6159
-2.2390 4.5236
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% Examples: The Square Corner V

Exact synthesis Is
Impossible for
planar four-bar:

« A PPPP mechanism
can replicate the
positions, but not the
orientations

« The coupler curve of
a planar four-bar is
at most 6, while-a « Motion from (0,1) to (1,1) to (1,0)
Square corner - Orientation decreases linearly

requires infinite from 90 to 0 degrees
order
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Manufacture Synthesis Matrix

pstitute pose information into

:(xcose— ysin@+a)* +(xsin@ - ycose+b)2T
[2(xcos® —ysin0+a))
[2(xsin®—ycos0+Db)]

i

* Plot yinterms of x and y




y Plot V
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y Plot
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y Plot
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Extracting Mechanism Parameters

« Minima found graphically at approximately
(0.8,0.6), and (0.8,-0.6)

 Using these values as input, Nelder-Mead
minimization finds the minima at

(0.8413,0.5706) and (0.8413,-0.5706)

» Singular value decomposition is used to find
the K vector corresponding to these
coordinates




Results

Dyad 1 Dyad 2

0.8413 0.8413
0.5706 -0.5706

1.0000 1.0000
-4.5843 1.0539
1.0539 -4.5843
1.2704 1.2704
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Conclusions

This method determines type and dimensions
of mechanisms that best approximate n > 5
poses In a least squares sense

No initial guess Is necessary
Examples Hlustrate utility and robustness
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Fitti ng Image Space Points (Displacements)
to Constraint Surfaces

Given a suitably over constrained set of image space
coordinates X, X,, X3, and X, which represent the desired set
of positions and orientations of the coupler identify the
constraint surface shape coefficients: K,, K;, K,, K;, X, and y.

The given image space points are on Some space Curve.

Project these points onto the best 4" order curve of intersection
of two quadric constraint surfaces.

These intersecting surfaces represent two dyads in a
mechanism that possesses displacement characteristics closest
to the set of specified poses.




Identifying the Constraint Surfaces

Surface type is embedded in in the coefficients of its
Implicit equation:
Co X7 +C XS +C, X2 +C, X5 +6,X X, +C. X, X, +

Co X X +C, X X, +C X, X, +Co X X, =0.

It can be classified according to certain invariants of its
discriminant and quadratic forms:

K x ey
Kol |G G G G
Kl |% & G G
Rl & & % G




Identifying the Constraint Surfaces

Given a sufficiently large number n of poses expressed as
Image space coordinates yields n equations linear in the c;

coefficients
Co X2 +C XS +C,XFFC XS +6, X, X, +C. X, X, +

Ce X X +C, X X, +C X, X, +Co X, X, =0.
The n equations can be re-expressed as:

Ac =0.

The same numbered elements in Matrix A, corresponding
to the X; are scaled by the unknown c;.




Identifying the Constraint Surfaces

« Applying SVD to Matrix A reveals the vectors c that are
In,.or computationally close, in a least-squares sense, to the
nullspace of A.

Certain invariants of the resulting discriminant and
corresponding quadratic form reveal the nature of the
quadric surface.

RR dyads require the quadric surface to be an hyperboloid
of one sheet with certain properties.

RP and PR dyads require the quadric surface to be an
hyperbolic paraboloid.




Equivalent Minimization Problem

« Assuming the mechanism type has been identified given
n>>5 specified poses, the approximate synthesis problem
can be solved using an equivalent unconstrained non-linear
minimization problem.

It can be stated as “find the surface shape parameters that
minimize the total spacing between all points on the
specified reference curve and the same number of points
on a dyad constraint surface”.

First the constraint surfaces are projected into the space
corresponding to the hyperplane X,=1.

 This yields the following parameterizations:




Equivalent Minimization Problem

« Hyperboloid of one sheet:

([x— K Jt+K, +y)+(rvt* +1)cos y
([y-K,Jt=K,=x)+(r t +1)siny
2t

}/_E{O,“',Zﬂ'}, t e{~o0,--, 0},

X and y are the coordinates of the moving revolute centre expressed
In the moving coordinate system E,

K; and K, are the coordinates of the fixed revolute centre expressed
In the fixed coordinate system X,

r is the distance between fixed and moving revolute centres,
while t and y are free parameters.




Equivalent Minimization Problem

« Hyperbolic paraboloid:
X, —b(t)’
+9| a(t)

0

t E{—OO,”',OO}, S E{—OO,”-,OO},
f(t), g(t), a(t), and b(t) are functions of the surface shape
parameters and the free parameter t,
while s Is another free parameter.

Note that in both cases the X; coordinate varies linearly with
the free parameter t, and can be considered another free
parameter.




Equivalent Minimization Problem

« The total distance between the specified reference image
space points on the reference curve and corresponding points
that lie on a constraint surface where t=X;=X; . Is defined as

d=Y X, X, +(X,

2
ref £ >(zi )
The two sets of surface shape parameters that minimize d

represent the two best constraint surfaces that intersect
closest to the reference curve.

The distance between each reference point and each
corresponding point on the quadric surface in the hyperplane
t=X3=X3. can measured in the plane spanned by X, and X,.
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% Example

v

« A planar 4R linkage was
used to generate 40 poses
of the coupler.

« The resulting image space
points lie on the curve of
Intersection of two
hyperboloids of one
sheet.

e The reference curve can
be visualized in the
hyperplane X,=1.

Image space points
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Example

In order for the algorithm to converge to the solution that
minimizes d, decent initial guesses for the surface shape

parameters are required.

Out of the 40 reference points, sets of five were arbitrarily
chosen spaced relatively wide apart yielding sets of five

equations in the five unknown shape parameters.

Solving yields the initial guesses.

Non-linear unconstrained algorithms such as the Nelder-
Mead simplex and the Hookes-Jeeves methods were used
with similar outcomes.




Results Generated From Initial Guesses V

Parameter

Guess 1

Guess 2

Guess 3

Guess 4

Guess 5

Guess 6

Guess 7

-97.720

-18.202

888.914

-5.000

1.000

-25.445

-1.398

-57.463

-12.363

432.395

0.000

-1.000

-17.073

-6.191

1491.757

261.650

-2374.375

21.000

-23.000

390.531

36.554

-1.133

-1.287

-0.894

3.000

-1.000

-1.309

-4.388

0.534

0.889

-5.375

-2.000

-2.000

1.030

-2.361

Iterations

450

623

718

101

176

745

436

d

1.1132

1.9333

6.726

0.0004

0.0010

1.5746

4.8138
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Conclusions

A new approximate synthesis algorithm was developed
minimizing the total deviation, d, from specified poses
represented as points in the kinematic mapping image space.

No heuristics are necessary and only five variables are needed.
The algorithm returns a list of best generating mechanisms ranked

according to d.

The minimization could be further developed to jump from local
minima to other local minima depending on desired “closeness”
to specified poses.

Relationships between the surface shape parameters may be
exploited so the algorithm recognizes undesirable solutions and
avolds iterations in those directions.
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Applications to Analysis

« Kinematic mapping can also be used effectively for the
analysis of complex kinematic chains.

« A very common example is a planar three-legged
manipulator.

« A moving rigid planar platform connected to a fixed rigid

base by three open kinematic chains. Each chain is
connected by 3 independent 1 DOF joints, one of which is
active.




% General Planar Three-Legged Platforms V

« 3 arbitrary points in a particular
plane, described by frame E,
that can have constrained
motion relative to 3 arbitrary
points in another parallel plane, A /
described by frame .

« Each platform point keeps a
certain distance from the
corresponding base point. These (i
distances are set by the variable |#s
A% .
joint parameter and the topology
of the kinematic chain.
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% Characteristic Chains V

The possible combinations of R
and P pairs of 3 joints starting
from the fixed base are:

RRR, RPR, RRP, RPP, PRR,
PPR, PRP, PPP

« The PPP chain is excluded since
no combination of translations
can cause a rotation.

« 7 possible topologies each
characterized by one simple
chain.
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Passive Sub-Chains

There are 21 possible joint actuation schemes, as any of the 3 joints in
any of the 7 characteristic chains may be active.

When the active joint input is set, the remaining passive sub-chain is
one of the following 3:

RR, PR, RP

The PP-type sub-chains are disregarded because platforms containing
such sub-chains are more likely to be architecture singular.

Thus, the number of different three-legged platforms is
n+k-1)!
C(n,k)= ( )
ki(n—21)!

The direct kinematic analysis of all 1140 types is possible with this
method.

— C(18,3) = 1140




% Kinematic Constraints

* RR-type legs: hyperboloid
— One of the passive R-pairs has fixed
position in . The other, with fixed
position in E, moves on a circle of fixed
radius centred on the stationary R-pair.

« PR-type legs: hyperbolic paraboloid
— The passive R-pair, with fixed position in
E, Is constrained to move on a line with
fixed line coordinates in X.

« RP-type legs: hyperbolic paraboloid
— The passive P-pair, with fixed position in
E, Is constrained to move on a point with
fixed point coordinates in . These are
Kinematic inversions, or projective duals,
of the PR-type platforms.




v

The Direct Kinematic Problem
« The direct kinematic position analysis of any planar three-
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legged platform jointed with lower-pairs reduces to
evaluating the points common to three quadric surfaces.
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% Workspace Visualization: Three RPR-Type LegsV




Three PPR-Type Legs
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£ Mixed Leg (RPR, RPR, RPR) Platform %
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This particular platform consists of
one each of RR-type, RP-type and
PR-type legs.

The constraint surfaces for given
leg inputs define the 3 constraint
surfaces.

The surfaces reveal 2 real and a pair
of complex conjugate FK solutions.

The RPR and RPR constraint
surfaces have a common generator.
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Mixed Leg Platform Workspace V

* RR-type legs result in families of
hyperboloids of one sheet all sharing
the same axis.

- »  PR- and RP-type legs in general
result in families of hyperbolic
paraboloids.

« These families are pencils:

— If the active joint is a P-pair the
hyperbolic paraboloids in one family
share a generator on the plane at
infinity.

— If the active joint is an R-pair the
hyperbolic paraboloids in one family
share a finite generator.
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